
Rumprun for Rump Kernels:

Instant Unikernels for POSIX applications

Martin Lucina, @matolucina

1 / 8

http://lucina.net/
https://twitter.com/matolucina

So many Kernels, what are they?
Monolithic kernel, Microkernel: standard stuff.
Rump kernel: an existing monolithic kernel componentized into an
anykernel. Mix and match kernel components any way you want.
Unikernel: turns the OS into a “library” for a single application. Normally
requires writing your application from the ground up for the Unikernel.
Mirage OS, for example.

Rump kernels
Today's talk by @anttikantee has all the details, won't repeat them here.
Many different use cases:

Use Rump Kernels to bootstrap a new OS quickly.
Use Rump Kernel components directly in a userspace application.
Use Rump Kernels as Unikernels for unmodified POSIX applications.

The last point is what will be demonstrated in this talk.

2 / 8

http://www.openmirage.org/
https://twitter.com/anttikantee
http://rumpkernel.org/

Rump kernels as Unikernels for POSIX
applications
Rump kernels already provide most of the components we need:

Core system calls.
File systems, network stack, device drivers, ...

What else do we need?

1. Threads, scheduling, memory management, locking, event handling
(interrupts): Provided by the hypervisor and “firmware”.

2. A C library: We re-use the NetBSD libc with minimal modifications.
3. A magic* build system: app-tools.
4. A magic* deployment system: rumprun.

* One that just works. No fiddling.

3 / 8

Rumprun
We need an easy way to provision and deploy the application on the various
different stacks:

Configure network devices.
Configure block devices and mount filesystems.
Platform-specific launching (Xen, KVM, ...).

The rumprun tool and rumpconfig module which I have been working on is the
beginning of this:

rumprun xen -di -n inet,static,10.10.10.10/16 \
 -b images/stubetc.iso,/etc \
 -b images/data.iso,data \
 .../mathopd -n -f /data/mathopd.conf

The Xen version uses Xenstore to communicate configuration to the
application. KVM, bare metal, etc. will need to use a mechanism yet TBD.

4 / 8

The fun part, the demo!
This demo is done using rumprun-xen, since that stack is complete right now.
This stack runs on the Xen hypervisor, repurposing Mini-OS as the
“firmware”. Thus the application runs as a PV guest on Xen.

Other stacks exist. rumpuser-baremetal is in progress and should work with
KVM, as a Xen HVM guest or on bare metal. Deployment will be different on
each of these, but rumprun can be extended to support all the stacks.

I will demonstrate:

1. Building the entire stack and running “Hello World”.
2. Building an unmodified POSIX HTTP server, mathopd.
3. Deploying and running it on a Xen host with rumprun.

5 / 8

http://wiki.xen.org/wiki/Mini-OS
http://repo.rumpkernel.org/rumprun-xen
http://repo.rumpkernel.org/rumpuser-baremetal
https://github.com/mato/rump-mathopd

This slide intentionally left blank for the demo.

6 / 8

What is it good for?

Security:

An alternative to containers, with much stonger isolation guarantees.
Making the standard OS go away reduces the attack surface.

If there is no shell, there is nothing to break in to!

Performance:

Application and Unikernel run at the same privilege level.
Greatly reduced cost of context switches.
Should help latency-sensitive workloads.

Next steps

Stabilise & fix bugs.
Upstream Mini-OS work to Xen.
More POSIXy interfaces. "Processes" and fork() emulation?
Improve rumprun and merge with rumpuser-baremetal stack.

7 / 8

Questions?

Resources
Rump Kernels: http://rumpkernel.org/
rumprun-xen: http://repo.rumpkernel.org/rumprun-xen
This demo: https://github.com/mato/rump-mathopd

Thank you for listening.
Martin Lucina, November 2014
@matolucina, https://lucina.net/

8 / 8

https://github.com/mato/rump-mathopd
http://rumpkernel.org/
http://repo.rumpkernel.org/rumprun-xen
https://lucina.net/

