Rum

Instant Uni

orun for Rump Kernels:

Rernels for POSIX applications

Martin Lucing, @matolucina

1/8


http://lucina.net/
https://twitter.com/matolucina

So many Kernels, what are they?

e Monolithic kernel, Microkernel: standard stuff.

« Rump kernel: an existing monolithic kernel componentized into an
anykernel. Mix and match kernel components any way you want.

e Unikernel: turns the OS into a “library” for a single application. Normally
requires writing your application from the ground up for the Unikernel.
Mirage OS, for example.

Rump Rernels

» Today's talk by @anttikantee has all the details, won't repeat them here.
« Many different use cases:

o Use Rump Kernels to bootstrap a new OS quickly.

o Use Rump Kernel components directly in a userspace application.

o Use Rump Kernels as Unikernels for unmodified POSIX applications.

The last point is what will be demonstrated in this talk.

2/8


http://www.openmirage.org/
https://twitter.com/anttikantee
http://rumpkernel.org/

Rump Rernels as Unikernels for POSIX
applications

Rump kernels already provide most of the components we need:

e Core system calls.
» File systems, network stack, device drivers, ...

What else do we need?

1. Threads, scheduling, memory management, locking, event handling
(interrupts): Provided by the hypervisor and “firmware”.
2. A Clibrary: We re-use the NetBSD libc with minimal modifications.

3. A magic* build system: app-tools.
4. A magic* deployment system: rumprun.

* One that just works. No fiddling.

3/8



Rumprun

We need an easy way to provision and deploy the application on the various
different stacks:

« Configure network devices.
» Configure block devices and mount filesystems.
 Platform-specific launching (Xen, KV}, ...).

The rumprun tool and rumpconfig module which I have been working on is the
beginning of this:

rumprun xen -di -n inet,static,10.10.10.10/16 \
-b images/stubetc.iso,/etc \
-b images/data.iso,data \
.../mathopd -n -f /data/mathopd.conf

The Xen version uses Xenstore to communicate configuration to the
application. KVM, bare metal, etc. will need to use a mechanism yet TBD.

4/8



The fun part, the demo!

This demo is done using rumprun-xen, since that stack is complete right now.
This stack runs on the Xen hypervisor, repurposing Mini-OS as the
“firmware”. Thus the application runs as a PV guest on Xen.

Other stacks exist. rumpuser-baremetal is in progress and should work with
KVM, as a Xen HVM guest or on bare metal. Deployment will be different on
each of these, but rumprun can be extended to support all the stacks.

I will demonstrate:

1. Building the entire stack and running “Hello World”.
2. Building an unmodified POSIX HTTP server, mathopd.
3. Deploying and running it on a Xen host with rumprun.

5/8


http://wiki.xen.org/wiki/Mini-OS
http://repo.rumpkernel.org/rumprun-xen
http://repo.rumpkernel.org/rumpuser-baremetal
https://github.com/mato/rump-mathopd

This slide intentionally left blank for the demo.

6/8



What is it good for?

Security:

« An alternative to containers, with much stonger isolation guarantees.
« Making the standard OS go away reduces the attack surface.
o If there is no shell, there is nothing to break in to!

Performance:

» Application and Unikernel run at the same privilege level.
» Greatly reduced cost of context switches.
» Should help latency-sensitive workloads.

Next steps

Stabilise & fix bugs.

Upstream Mini-OS work to Xen.

More POSIXy interfaces. "Processes" and fork() emulation?
Improve rumprun and merge with rumpuser-baremetal stack.

71/8



Questions?

Resources

o Rump Kernels: http://rumpkernel.org/
e rumprun-xen: http://repo.rumpkernel.org/rumprun-xen
o This demo: https://github.com/mato/rump-mathopd

Thank you for listening.

Martin Lucina, November 2014

@matolucina, https:/lucina.net/

8/8


https://github.com/mato/rump-mathopd
http://rumpkernel.org/
http://repo.rumpkernel.org/rumprun-xen
https://lucina.net/

